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Three-dimensional numerical calculations of an inviscid gas past scoops in a gas 
centrifuge are performed by solving the Euler equations using the explicit Roe 
upwind scheme with a second-order of accuracy. The scoop is modelled as a cylindrical 
or a wing-shaped rod attached to a central tube and extending radially outwards, 
and no inlet flow to the scoop is assumed. The scoops are placed close to the bottom 
end plate, and there is no covering baffle plate. The numerical grid employed is of the 
multibox type. The main results are as follows. For a cylindrical scoop, a detached 
bow shock is formed in front of the scoop. Behind the shock, strong radially inward 
motion of gas towards the central axis is induced, and it excites an upward flow 
which becomes a countercurrent. The inward flow just in front of the scoop produces 
a vortex column in the upstream region of the scoop. For a wing-shaped scoop, an 
oblique shock attached to the scoop is formed, and an inward flow is induced behind 
the shock. The shock is not so strong as that in the case of a cylindrical scoop model. 
The drag coefficient of the wing-shaped scoop is almost one-fourth of that of the 
cylindrical scoop. The addition theorem of the scoop drag is verified for the wing- 
shaped scoop. 

1. Introduction 
A gas centrifuge is a rapidly rotating long cylinder, in which a gas of isotope 

mixtures such as uranium are separated by the centrifugal force. In  order to enhance 
separation, a counter-current flow is set up in the rotor by some means. In a thermally 
driven gas centrifuge, a countercurrent is induced by a temperature difference 
between the top and the bottom end plate or a temperature distribution on the 
sidewall. 

A mechanically driven gas centrifuge utilizes scoops to generate a countercurrent. 
The scoop is a rod attached to a central feed tube, and it is fixed to the inertial frame 
and does not rotate with the cylindrical rotor. A rotating gas hitting the scoop loses 
angular momentum, and an inward motion of the gas, which generates the 
countercurrent, is induced. The scoop has another role : to  collect either enriched or 
depleted gas (see figure 1). 

It is almost impossible to measure a supersonic flow experimentally in a gas 
centrifuge, although there have been several works on subsonic flows. However, 
compressibility of the gas plays an essential role in a gas centrifuge. Therefore, we 
must rely on theoretical approaches to understand supersonic flows in a gas 
centrifuge . 

The flow pattern of a thermally driven countercurrent has been analysed both 
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FIQURE 1 .  A schematic diagram of the flow field in a scoop-type (Zippe type) gas centrifuge. 
The region surrounded by the dashed line is considered in the present work. 

analytically and numerically by many authors (Sakurai & Matsuda 1974 ; Nakayama 
& Usui 1974; Bark & Bark 1976; Wood & Morton 1980; see reviews by Olander 1972; 
Ratz 1978 ; Soubbaramayer 1979). The characteristics of a thermally driven 
countercurrent are well understood because of its relatively simple nature. 

On the other hand, a flow induced by a scoop is essentially three-dimensional and 
nonlinear in nature, and the scoop flow is not yet well understood. In  an analysis of 
the scoop flow, it has been customary to replace the scoop by an equivalent disk 
rotating slightly slower than the main rotor in order to make the problem a linearized 
axisymmetric one. 

For example, Matsuda & Hashimoto (1976) assumed the angular speed of the 
equivalent disk to be 52, - AQ. Although we could obtain the same countercurrent as 
the scoop-driven flow by assuming an appropriate form of ABfr) of the equivalent 
disk, there are no theoretical grounds on which to  choose this form. 

Kai (1983a, b)  computed the drag on the gas due to the scoop, and equated it with 
a viscous drag due to an axisymmetric equivalent disk. In  his calculation, Kai 
assumed the drag coefficient C, to be unity. In  neither approach could a possible 
three-dimensional effect be taken into account, and so it is essential to know what is 
happening in the flow past scoops. 

Sakurai (1981) analysed the scoop flow in terms of a linearized thin-wing theory, 
and verified the addition theorem of the drag due to  the scoops, i.e. a scoop seems to 
be unaffected by upstream scoops (or itself, if only one scoop is present). Therefore, 
the drag is independent of the number of scoops. 
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On the other hand, T. Sakurai (1987, private communication) speculated a 
completely opposite picture for a blunt-nosed scoop. The wake behind a blunt-nosed 
scoop develops into a dead-air zone, in which the scoop is immersed. In  this picture 
no shock waves are generated by the scoop. He speculated that Ekman layers 
develop between the dead air and the incident flow, and secondary flow is induced 
in the Ekman layers. The motivation of the present work is to  find out if this picture 
is valid. 

Hittinger, Holt & Subbaramayer (1981) and Hittinger et al. (1983) obtained a 
solution exhibiting a bow shock in front of a cylindrical scoop. Mikami (1981, 1985) 
performed two-dimensional numerical simulations of a flow about a scoop inlet, and 
Aoki & Suzuki (1985) computed three-dimensional inlet flows ; they obtained shocks 
generated by the scoop. In  these studies, however, they assumed a uniform upstream 
flow and considered only the region close to the scoop. The upstream effects of the 
scoops are completely neglected. In  order to  see if shocks are formed a t  all, three- 
dimensional calculations that include the whole region are essential. 

Elsholz (1979), Volosciuk (1981), and Walz, Volosciuk & Schutz (1983) performed 
three-dimensional Navier - Stokes simulations of flows affected by a scoop. They 
modelled a scoop by a stationary disk extending in the azimuthal direction, although 
such a shape is not realistic. They obtained a secondary flow induced by the scoop, 
but shocks were not seen, probably because of the coarse mesh employed by them. 
A full Navier-Stokes calculation seems to be still premature considering the 
performance of the present day supercomputers. 

The most relevant work for the present investigation is by Roberts (1985), who did 
N-body Monte Carlo simulations of gas impacting on a probe/scoop modelled as a 
cylindrical rod extending radially from the central axis. He showed large systematic 
motions induced in the gas by the obstacle, with strong radially inward-driven flow 
in the neighbourhood and downstream of the obstacle and a correspondingly large 
density perturbation in these regions. 

Since Roberts used a Monte Carlo method, he could compute only the low-density 
central region of the centrifuge rotor. He also restricted his attention to the flow field 
near the scoop, neglecting the effect due to the upstream scoop. 

In  the present paper we shall give the first results of three-dimensional gasdynamic 
calculations of flows past scoops extending radially. Therefore, our work is to some 
extent complementary to that of Roberts : he considered an infinitely long cylindrical 
rotor, while we take into account the bottom end plate. We compute the whole flow 
region by assuming a periodic boundary condition, an assumption essential to settle 
the argument on the occurrence of shocks. We discuss two scoop shapes : cylindrical 
and wing-shaped. 

We do not take into account the effect of viscosity explicitly in this work, and we 
solve Euler equations rather than the Navier-Stokes equations. Therefore, the 
Ekman layer and the Stewartson layer do not appear. Although the effect of 
viscosity is yet to be taken into account, this does not mean that i t  does not play any 
role in our calulation. I n  fact viscosity plays an important role in a thin shock layer 
in inducing a radially inward flow. 

Since a centrifuge rotor rotates so rapidly that its central region is almost a 
vacuum, the fluid dynamical approach may be irrelevant. We truncate the central 
region by assuming a very thick solid inner tube, whose radius is assumed to be as 
large as 0 . 5 2 4 . 7 R ,  R being the radius of the rotor. 

We assume two, three or four scoops which are equally spaced in the azimuthal 
direction. Adopting a periodic boundary condition a t  an upstream and a downstream 
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boundary, there is always only one scoop in the computational region. The scoops are 
attached to the inner tube and extend radially up to 0.95R. The radius of the 
cylindrical scoop and one-half of the thickness of the wing-shaped scoop are both 
fixed a t  0.05R. Their central axes are placed 0.lR above the bottom end plate. The 
half-vertex angles of the leading edge and the trailing edge of the wing-shaped scoop 
are 30". There is no inlet section attached to the scoop, and no inlet flow is assumed. 
We are only interested in the secondary flow induced by the presence of the scoops. 
We place no baffle cover above the scoop in this work. The rotational Mach number 
is fixed a t  7, so the peripheral speed is about 630 m/s. 

In $ 2  the grid system and the numerical method of the flow calculation are 
explained. The results are presented in the $53 and 4, and a conclusion and a 
discussion are given in the $5.  

2. Numerical method 
2.1. Grid system 

Among various methods for generating a grid system, we adopt in the present study 
the multiblock transformation technique (Lee 1981 ; Rubbert & Lee 1982) combined 
with an algebraic grid generator because of its inherent geometrical flexibility to the 
wide class of complex three-dimensional geometries. An additional advantage of 
adopting the multiblock grid system is that a flow solver can be fully vectorized, 
retaining a longer vector length. 

In  the multiblock transformation, a body in the physical space is mapped on the 
surface of the corresponding hexahedral block in the computational space. The 
resultant grid has a similar structure as an H-H-H type grid system. In  the course of 
surface/volume grid generation, we apply the transfinite interpolation method 
(Eriksson 1982). A complete description on our numerical methods can be found in 
Takanashi & Sawada (1987). 

We have prepared several grid systems for the flow calculations. The standard grid 
for the cylindrical scoop (case 1 of table 1 )  has 50 azimuthal, 30 radial and 40 vertical 
grid points. The radius of the inner tube is set to 0.7 (normalized by the outer radius 
of the peripheral casing) while the length of the rotor is 0.3. The range of 8 is from 
0' to 180°, which corresponds to the case of two scoops. The other grid systems are 
listed in table 1.  Figures 2 (a)  and 2 ( 6 )  show a representative overall view of the grid 
systems of cases 1 and 6, respectively. 

2.2. Flow calculations 
We neglect the effect of viscosity in the present calculation so that the Euler 
equations written in the inertial frame of reference are solved. They can be written 
in vector form as 

where 
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Case I,,,,, 

1 50 
2 90 
3 50 
4 50 
5 50 
6 70 
7 70 
8 70 

Grid 

J,,, 

30 
30 
40 
30 
30 
30 
30 
30 

- 

K,, 
40 
46 
40 
50 
40 
46 
46 
46 

r 

0.7-1 .O 
0.7-1.0 
0.5-1.0 
0.7-1.0 
0.7-1.0 
0.7-1.0 
0.7-1.0 
0.7-1 .0 

e 
0"-180° 
O0-180" 
0"-180" 
O"-i80" 
0"-180" 
0"-180" 

30"-150" 
45"-135" 

z 

04.3  
0-0.3 
0-0.3 
0-0.4 
0-0.3 
0-0.3 
0-0.3 
0-0.3 

M 

7 
7 
7 
7 
3.5 
7 
7 
7 

Range 

scoop 

cylinder 
cylinder 
cylinder 
cylinder 
cylinder 

wing 
wing 
wing 

TABLE 1. The grid systems used in the present calculations 

@) 

FIGURE 2. An overview of the computational domain and the grids for (a)  the cylindrical 
scoop, and ( b )  the wing-shaped scoop. 

where p represents the density, (u, v ,  w) are the Cartesian velocities, p the pressure 
and e the total energy per unit volume. The equation of state 

in which y represents the specific heat ratio, which we fixed 
UF,. 

is given by 

(2.3) 

at 1.065 to simulate 
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FIGURE 3. Boundary conditions. 

The outer radius of the surrounding casing R is taken as the lengthscale. Velocities 
are normalized by the sound speed and density by its value at r = R of an isothermal 
gas in rigid rotation with angular velocity SZ,, which is the reference state of the 
present calculations. This state is also used as the ambient boundary condition, 
which will be described in $2.3. 

We apply the upwind-baiased finite-volume method of the TVD scheme to  (2 .2 ) .  
We follow the finite-volume formulation by Agrawal & Deese (1983), and define 
piecewise linear profiles of the conservative variables in each cell. To determine the 
numerical flux at the cell faces, we use Roe’s approximate Riemann solver (Roe 
1981). The integration of (2.2) in time is performed by a two-step explicit method. 
The accuracies in space and time are both second order. We use a local time-stepping 
method to accelerate the convergence. The notion of the TVD was introduced by 
Harten (1983) and has been advanced by many authors (see, for example, 
Chakravarthy 1986). A complete description of our numerical methods can be found 
in Sawada & Takanashi (1987). 

2.3. Boundary conditions 

The boundary conditions adopted in the present calculations are schematically 
illustrated in figure 3. The bottom wall and the sidewall of the casing as well as the 
surface of the scoop are treated as solid boundaries. Since we are solving the Euler 
equations, the mass flux and the energy flux vanish there and only the momentum 
fluxes due to the pressure force remain. 

The upstream and downstream boundaries are treated as the periodic boundaries. 
On the top boundary, we apply the ambient boundary condition (Sawada et al. 1986) 
in which we assume fictitious cells located just outside the top boundary surface. The 
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physical quantities corresponding to an isothermal gas in rigid rotation are specified 
in these fictitious cells. The numerical flux a t  the top boundary is determined by 
solving the Riemann problem. Since we solve the Riemann problem by our upwind 
scheme, i t  does not require any additional work. 

Since we solve the Euler equation written in the inertial frame of reference, there 
is no viscous force to drive the rotation of the flow, as in a real situation. The net 
torque to keep flows rotating in the calculation is supplied from the inflows, i.e. 
downdraughts, a t  the outer part of the top boundary. At the same time, possible 
shock waves penetrate, and outflows, i.e. updraughts, occur in the inner part of this 
boundary. 

It should be stressed that we do not assume that the flow tends to that of rigid 
rotation with increasing z .  We only assume that the gas in the peripheral region a t  
large z rotates rigidly with the angular velocity Q, because it is in the Stewartson 
layer in reality. The inflow only occurs a t  the outer part of the top boundary, and this 
inflow conveys the angular momentum of the rigidly rotating gas with Q = 52,. In  the 
inner region the updraught occurs, the vertical velocity component. of which is 
subsonic. Therefore, only the characteristics of w-c, where c is a sound speed, enter 
from the top boundary into the computational region. Although the pressure of gas 
in the fictitious cells is felt by the gas in the computational domain, the rigidly 
rotating gas in the fictitious cell does not give a torque to the inner gas because of 
the upwind nature of our ambient boundary condition. Therefore, even if we extend 
our computational domain further in the axial direction, the computed angular speed 
would not approach that of rigid-body rotation. This expectation will be tested in our 
calculations. 

The ambient boundary condition is a neat approach to realize an upwind and the 
non-reflecting nature. Inflows and outflows occur in quite natural ways according to 
the solution of the Riemann problem at the boundary surface. The influence of 
various numerical boundaries, including the present ones, on the simulation of 
laboratory free jet flows can be found in Matsuda et al. (1987). 

3. Result for cylindrical scoops 
3.1. Test calculation 

The numerical methods described above have been applied to a test problem, i.e. 
supersonic flows past a sphere. The region covering a quarter-sphere is calculated, 
with 60 x 30 x 30 grid points. The results were compared with a photograph in Van 
Dyke (1982) for Mach numbers ofM = 1.53 and M = 4.1 and good agreement with the 
shock profiles was obtained. 

3.2. Standard case 

In this subsection we describe the result for case 1 in table 1.  For the initial condition, 
we assumed a rigidly rotating gas in the computational region, and an impulsive 
start was applied. We monitored the inflow and the outflow of mass a t  the top 
boundary and also the drag coefficient, C,, of the scoop to check the convergence. We 
found that all cases converged within a residue of less than lo-' by 2000 steps. The 
CPU time is 1 h for 1000 steps by the Fujitsu VP200 vector processor and 47 min by 
the VP400 vector processor both a t  the Data Processing Center of Kyoto University. 

Figures 4(a) ,  4(b) and 4(c) show the pressure contours in the (8, 2)-plane at r = 
0.94, r = 0.9 and r = 0.86, respectively. At the tip of the scoop, a strong bow shock 
is seen, which becomes weaker as i t  travels inward. 
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c 
FIGURE 4. Pressure contours in the (8, 2)-plane at (a) r = 0.94, ( b )  r = 0.9, ( c )  r = 0.86. &,, and 
Q,,,," show the maximum and the minimum contour lines of the logarithm of the dimensionless 
pressure, respectively, and the increment is 0.2. 

Figure 5 ( a )  shows the velocity vectors in the ( r ,  @-plane at  the scoop. Strong 
radially inward flow is seen in front of and behind the scoop. The inward flow ahead 
of the scoofheaches the inner solid boundary, and moves upstream to form a vortex. 
This vortex extends in the vertical direction and forms a vortex column. It was quite 
unexpected to find that the central region of a gas centrifuge rotates in the opposite 
direction from the rotor. As can be seen later, this phenomenon is common in the other 
cases with a cylindrical scoop, and, if correct, shows that a cylindrical scoop is not 
suitable from an engineering view point. 

Figure 5 ( b )  shows the pressure contours corresponding to figure 5(a) .  In the region 
near the scoop tip, the pressure stratification is considerably disturbed due to the 
shock. 

Figures 6 (a) ,  6 ( b )  and 6 ( c )  show the velocity vectors in the ( r ,  2)-plane just in front 
of the scoop, at  its centreline and just behind it, respectively. One can see the strong 
radially inward motion of gas, which hits the inner wall to form an updraught. Near 
the periphery the perturbations of velocities are almost invisible. Slight perturbations 
may cause large mass flows at the peripheral region because of the high density of 
gas. 

Figure 7 (a )  shows the velocity contours of the vertical component of the flow (solid 
lines show the updraught and dotted lines the downdraught). This figure shows that 
there is a rather strong updraught in the central region of the rotor, and thus a 
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FIGURE 5. (a )  Velocity vectors and ( b )  pressure contours in the ( r ,  @-plane at the centreline of 
the scoop, z = 0.1. Q,,, = 0.076, Q,,, = -4.682, and the increment is 0.2. 

countercurrent is produced. Figure 7 ( b ) ,  which shows the vertical mass flux at  the 
top boundary, reveals that this countercurrent flow is restricted to very close to the 
peripheral region, because of the strong density stratification in the radial direction. 
We can also find a vertical wavy motion which produces downdraughts a t  19 = O", 90' 
and 180" and updraughts a t  8 = 45" and 135". We shall also see this phenomenon in 
the wing-shaped model. 

Figure 8 shows the averaged vertical mass flux as a function of the radial 
coordinate. This figure shows that a countercurrent exists as a whole in spite of 
vertical wavy motion. 

3.3. The case with a smaller central tube 
What is the cause of the formation of the vortex column ahead of the scoop ? The lack 
of viscosity in our model may permit the generation of the vortex column. If the 
inner tube is smaller, a vortex column may not be produced. Since taking into 
account viscosity is a future task, in the present study we investigate only the effect 
of the location of the inner wall. 

The gas moving inward along the front face of the scoop collides with the central 
tube and turns upstream. To see this effect, we computed the case in which the inner 
boundary is placed a t  r = 0.5 instead of 0.7 (case 3). 

We still observe the vortex column in front of the scoop. The counter-rotating 
region extended almost to the upstream boundary. Therefore, it is anticipated that 



FIQURE 6. Velocity vectors in the ( T ,  2)-plane, (a )  just in front of, ( b )  at the centreline, ( c )  just 
behind the scoop. 

the counter-rotating region will fill almost the entire inner core region, if the radius 
of the central tube is reduced further. 

In figure 8 the dash-dot line shows the averaged mass flux for case 3. 

3.4. The case with a longer rotor 
In the previous case, the numerical top boundary conditions are applied at  z = 0.3. 
In order to  see the effect of the location of the boundary, we computed the case in 
which the top boundary is moved to x = 0.4 (case 4). In figure 8 a dashed line shows 
the averaged mass flux for case 4 at  z = 0.3. It is almost the same as that for the 
standard case. Therefore, one can conclude that the rotor length of z = 0.3 is long 
enough for our purpose. 

By comparing the three lines in figure 8, one can say that the choice of the 
boundary conditions does not have any significant effect on the countercurrent. 
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FIGURE 7 .  (a)  Vertical velocity, w, in the ( r ,  O)-plane a t  the top boundary; ( b )  vertical mass 
flux, pw, contours. Dotted lines show the downward flow. 
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FIGURE 8. The vertical mass fluxes, pw, averaged in the azimuthal direction for three cases: 
case 1 corresponds to the standard model, case 3 to the smaller central tube, and case 4 to the 
longer rotor. 
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FIGURE 9. The vertical mass fluxes, pw, averaged in the azimuthal direction for three cases : case 1 
corresponds to the standard model, case 5 to a lower Mach number, and case 6 to a wing-shaped 
scoop. 

3.5. The case with a lower Mach number 

In all the above examples the Mach number at  the periphery of the unperturbed gas 
was M = 7 .  In this subsection we examine the case in which M = 3.5 to see the effect 
of the peripheral velocity (case 5).  We found that the radially inward motion in front 
of the scoop is weaker compared to the case a t  M = 7. However, we still observe a 
weak vortex column at the upstream side of the scoop. In figure 9 a dotted line shows 
the averaged mass flux for case 5. We can see that the peak of the updraught is 
shifted towards the central tube. 

4. Results for a wing-shaped scoop 
4.1. Flow Jields 

The real shape of the scoop of the gas centrifuge in the industrial use is classified, 
but in most theoretical works i t  is assumed to  be a cylindrical rod for simplicity. In 
this subsection we investigate the case in which the scoops are wing-shaped bodies 
(case 6). 

Figures lO(a) ,  lO(b) and 10(c) show the pressure contours in the (0, 2)-plane at 
r = 0.94, r = 0.9 and r = 0.84 respectively. Strong attached oblique shocks are seen 
even at  r = 0.86. Figure 11 (a)  shows the velocity vectors in the ( r ,  @-plane a t  the 
scoop centre. In front of the scoop there is no inward flow and no vortex column is 
formed. One can conclude that the normal shock in front of the cylindrical scoop is 
responsible for the formation of the vortex column. Figure 11 (b)  shows the pressure 
contours. 

Figures 12 (a ) ,  12 (b)  and 12 ( c )  show the velocity vectors in the ( r ,  2)-plane just in 
front of, a t  the centre and just behind the scoop, respectively. These figures show the 
inward flow behind the oblique shock. The deceleration by the oblique shock is 
weaker than for the cylindrical scoop and therefore the inward flow is weaker as 
well. 

Figure 13 ( a )  shows the velocity contours of the vertical component. It can be seen 
that a rather strong downdraught exists on the scoop. Just behind the scoop, there 
is a strong updraught, though these flows do not contribute as much to the vertical 
mass flux, as is shown in figure 13(b). 
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FIGURE 10. Pressure contours on wing-shaped scoops at (a )  r = 0.94, ( b )  r = 0.9, ( c )  r = 0.86, 
and the increment is 0.2. One can observe strong attached shocks. 

In figure 9 the dash-double-dotted line shows the averaged mass flux for case 6. We 
can see that the wing-shaped scoop produces a weaker countercurrent than the 
cylindrical scoop. 

4.2. The drag coeficient C, 
In  order to test Kai’s assumption (Kai 1983a, b )  that Cd is unity, the drag force is 
computed by integrating the 8-component of the pressure force acting on the scoop 
surface, and from it C, is computed: 

P 

where F and D, are the drag force and the thickness of the scoop. To normalize the 
density and the azimuthal velocity of gas, we used the unperturbed values rather 
than the computed ones. 

Figure 14 shows the radial variation of C, based on our model computed both by 
the coarse grid (case 1) and by the finer grid with cylindrical scoops embedded (case 2). 
They agree in general, and agree well at r > 0.93. This shows that our results based 
on the coarser grid are good enough for practical purposes, because the inner region 
does not contribute to the performance of the gas centrifuge very much. 

We can also say that Kai’s assumption is not too bad. At r = 0.7, however, C, 
becomes as large as 70. This is inevitable since the density of gas in this region 
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FIGURE 1 1 .  (a) Velocity vectors and ( b )  pressure contours in the ( r ,  @-plane at the centre of the 
scoop, z = 0.1, for the wing-shaped scoop. Q,,, = 0, Qmin = -5.461, and the increment is 0.2. 

deviates very much from the unperturbed value, and the drag coefficient computed 
on the unperturbed quantity does not have any significant meaning there. However, 
the inner region is not very important. 

Sakurai (1981) analysed the scoop flow in terms of linearized thin-wing theory and 
demonstrated the addition theorem for the scoop drag, i.e. the drag coefficients of 
scoops are independent of the number of scoops as long as the shock waves are 
attached to the scoop. We tested this theorem for wing-shaped scoops. We calculated 
C, for three cases, in which the number of scoops N are 2, 3 (case 7)  and 4 (case S), 
respectively. Figure 15 shows the drag coefficient for these three cases. In the range 
0.9 < r < 0.95, C, values agree well. Although Sakurai restricted his theorem to 
r > 0.95, our results suggests a wider range of applicability. It is considered that 
this theorem demonstrates the typical three-dimensional effect of a scoop flow. 
Although the existence of a scoop affects the flow field behind it, its effect is convected 
inwardlupward by the countercurrent flow produced by the scoop. Fresh air 
rotating with angular velocity $2, is supplied from the outer-upper corner, and the 
dead air is convected away. This is the reason why the addition theorem holds. 
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FIGURE 12. Velocity vectors in the ( r ,  2)-plane, (a )  just in front of, ( b )  a t  the centreline, and ( c )  
just behind the scoop. 

5. Conclusion and discussion 
We have performed three-dimensional Eulerian calculations of flows past scoops in 

a gas centrifuge. Flow fields around two types of scoop, cylindrical and wing-shaped, 
were investigated for variety of cases. The algebraic method and the multiblock 
transformation technique were employed to generate grid systems. The Euler 
equations were solved by the second-order Roe upwind TVD method. We have 
obtained following results. 

5.1. Cylindrical scoops 

A strong bow shock was formed around the scoop tip, and the inward flow, which 
resulted in a countercurrent flow, was induced by it (see figures 4a, 5 a and 6).  At the 
top boundary, the countercurrent was not uniform in the azimuthal direction but the 
averaged vertical mass flux showed the formation of the countercurrent as a whole 
(see figures 7a,  b and 8). A vortex column is formed in front of the scoop. Therefore, 
the inner gas rotates in the opposite direction to the rotor (see figure 5a).  By 
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Increment = 0.180 

Increment = 0.015 

FIGURE 13. (a )  Vertical velocity contours in the ( T ,  @-plane a t  the top boundary; ( b )  vertical 
mass flux contours. Dotted lines show the downward flow. 

comparing the three lines in figure 8, one can conclude that the choice of the 
boundary condition does not have any significant effect on the countercurrent. 

5.2. Wing-shaped scoops 

Ar. oblique shock attached to the scoop was formed (see figure 10a-c). Behind the 
scoop an inward Aow was induced (see figures 11 and 12c). It was not so strong as in 
the case of cylindrical scoops. There was no vortex column in front of the scoop (see 
figure 11 a) .  The averaged mass flux was weaker, and the drag coefficient was almost 
one quarter of that for the cylindrical scoop. The addition theorem of scoop drag was 
verified (see figure 15). 

5.3. Discussion 
There are two major drawbacks to the present work: (a)  the limited computational 
domain in the axial direction; ( b )  the neglect of viscosity. We discussed (a) in $2.3 on 
the boundary condition on the top numerical boundary, and pointed out that the 
rigidly rotating gas in the fictitious cell does not give a torque to the gas in the 
computational domain. However, this does not mean that the rigidly rotating gas 
does not have any effect on the gas in the computational domain. It may control the 
mass flux through the top boundary through the pressure balance. Therefore, the 
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FIQURE 15. The drag coefficients in the presence of two, three and four wing-shaped scoops 
(cases 6, 7 and 8). 

updraught velocity may be overestimated in our calculations. However, it is 
impossible to carry out inviscid calculations including the whole cylindrical region, 
because without viscosity there is no driving force to  rotate gas. 

The neglect of viscosity is certainly problematic. The picture of the complete flow 
field would be as follows. The bottom waste scoop decreases the angular momentum 
of the gas, and the fluid close to the scoop is pushed towards the rotor axis. The 
slowdown of the bulk of the fluid sets up Ekman layers both on the bottom end plate 
and on the baffle covering the top scoop. Meridional flows are set up which are closed 
through the outward radial motions in the Ekman layers and the vertical motions in 
the Stewartson layer. 

Since we did not take into account viscosity, the bottom Ekman layer cannot 
exist, and therefore the outward radial motion of gas on the bottom end plate cannot 
be treated. The outward motion on the top baffle is implicitly assumed, though. 
Therefore, i t  may be argued that the differential rotation between the container and 
the bulk of the fluid, in our models, may not be large enough for the viscous forces 
in the Ekman layers to balance the drag on the bottom waste scoop. I n  realistic cases 
the slowdown of the bulk of the fluid may be so large that the strong shock a t  high 
Mach numbers would never occur. The ambient boundary condition may supply 
more angular momentum than the viscous forces could. 

8 FLM 201 
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However, if such an argument is correct, the separation efficiency of the gas 
centrifuge would be much less than that calculated using conventional axisymmetric 
flow models based on an equivalent disk model (see for example Kai 1983a, b) .  
Therefore, i t  would be plausible to assume that the bulk of the fluid rotates almost 
rigidly in reality. Moreover, it is natural to  assume that the fluid in the downdraught 
through the outer part of the top numerical boundary has the angular velocity of the 
rotor, because such a downdraught should occur through the Stewartson layer, in 
which viscosity plays a dominant role in reality. I n  order to resolve this argument, 
however, we need to perform full three-dimensional Navier-Stokes calculations 
including the whole rotor. 
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thank an anonymous referee for his critical comments. The present calculations have 
been performed on the Fujitsu VP200/400 vector processors a t  the Data Processing 
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